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The Very Early History of Trigonometry

Dennis W. Duke, Florida State University

The early history of trigonometry, say for the time from Hipparchus
through Ptolemy, is fairly well established, at least in broad outline (van
Brummelen 2009). For these early astronomers plane trigonometry allowed
the solution of an arbitrary right triangle, so that given either of the non-90°
angles one could find the ratio of any two sides, or given a ratio of sides
one could find all the angles. In addition the equivalent of the law of sines
was known, although use infrequently, at least by Ptolemy. This skill was
fully developed by the time Ptolemy wrote the Almagest, ca 150 CE
(Toomer 1980), and he used it to solve a multitude of problems, some of
them quite sophisticated, related to geometric models of astronomy.
Ptolemy’s sole tool for solving trigonometry problems was the chord: the
length of the line that subtends an arc of arbitrary angle as seen from the
center of a circle. Using a standard circle of radius 60, the 4/magest gives a
table of these chords for all angles between '2° and 180° in increments of
%:°, and indeed Ptolemy gives a fairly detailed account of how one can
compute such a table using the geometry theorems known in his time.
Curiously, but not all that unusual for Ptolemy, it appears that some of the
chord values in the Almagest were not in fact derived using the most
powerful theorems that Ptolemy possessed (van Brummelen 1993, 46-73).

We also have evidence from Ptolemy that Hipparchus, working around 130
BCE, was able to solve similar trigonometry problems of about the same
level of difficulty. For example, regarding finding the eccentricity and
direction of apogee for the Sun’s simple eccentric model, Ptolemy writes ,
Ptolemy writes in A/magest 111 4:

These problems have been solved by Hipparchus with great care. He assumes
that the interval from spring equinox to summer solstice is 92/ days, and that
the interval from summer solstice to autumn equinox is 92% days, and then,
with these observations as his sole data, shows that the line segment between
the above-mentioned centres is approximately %4”1 of the radius of the

eccentre, and that the apogee is approximately 24’4° in advance of the summer
solstice.

The similar problem of finding the eccentricity and direction of apogee for
the Moon’s simple epicycle model is complicated by the moving lunar
apogee. A glance at Figure 1 and a few moments consideration might give
you some feel for the more advanced difficulty level of this particular
problem. that Ptolemy explains in 4/magest IV 6:
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In this first part of our demonstrations we shall use the methods of establishing
the theorem which Hipparchus, as we see, used before us. We, too, using three
lunar eclipses, shall derive the maximum difference from the mean motion and
the epoch of the [moon’s position] at the apogee, on the assumption that only
this [first] anomaly is taken into account, and that it is produced by the
epicyclic hypothesis.

M,

M,

M,

Figure 1. Consider a circle with center C and radius r. Let the distance OC = R.
The angles M,CM,, M,CM; and M;0M>, M>OM; are given, and the problem is to
find »/R. For a solution see A/magest IV 6 or Toomer 1973.

Finally, in Almagest TV 11 Ptolemy presents two trios of lunar eclipses that
he says Hipparchus had used to determine the size of the first anomaly in
lunar motion. Ptolemy gives just the results of Hipparchus’ solutions, and
from these we learn that while Hipparchus was certainly a capable user of
trigonometry, he used a different set of numerical conventions than those
used by Ptolemy. For example, while Ptolemy used a standard 360° degree
circle with a radius of 60 parts, Hipparchus apparently specified the
circumference of his circle as having 21,600 ( = 360 x 60) parts, so that his
diameter was about 6875 parts and his radius was about 3438 parts
(Toomer 1973). We cannot, however, be sure whether Hipparchus used the
same chord construct as Ptolemy, or perhaps just gave the ratio of side
lengths corresponding to a set of angles. Nor can we be sure whether
Hipparchus used a systematized table, or if he did, the angle increments of
that table (Duke 2005).

One attempt to resolve these questions comes not from Greek or Roman
sources, but from texts from ancient India that date from perhaps 400 — 600
CE. For many reasons, including the use of the circumference convention
identical to that used by Hipparchus, and in spite of their appearance in
India some six centuries after Hipparchus, it is has been proposed that these
texts reflect a Greco-Roman tradition that is pre-Ptolemaic and largely
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otherwise unknown to us (Neugebauer 1956, Pingree 1976,1978, van der
Waerden 1961). These proposals have so far eluded definitive confirmation
(and neither have any effective refutations appeared), but if they are true for
the parts involving trigonometry, then it would seem plausible that
Hipparchus’ working set of tools included tables with 23 (non-trivial)
entries of side ratios in angular increments of 3%°, corresponding to chords
in increments of 7'2°, for we find exactly such tables in many Indian texts,
always embedded in astronomical material that is extremely similar to early
Greek astronomy.

We might be able to understand Hipparchus’ use of trigonometry somewhat
better if we had a little more idea how it was developed. There is a Greek
source that might well be helpful in this regard, namely Archimedes’
Measurement of a Circle (Heath 1897). Archimedes’ mathematical
methods in this paper are well-known: he uses the bounds

265 1351
153 < 3 < 780

on /3 and then alternately circumscribes and inscribes a set of regular
polygons around a circle, ultimately computing the ratio of the
circumference of 96-sided polygons inside and outside the circle to the
diameter of the circle, thus establishing bounds on 7 as

10 1
3ﬁ<ﬂ<37

What Archimedes actually computes in both cases (circumscribing and
inscribing), however, are the ratios of the lengths of sides for a series of
right triangles with smallest interior angle 30°, 15°, 7'4°, 3%°, (and
partially 1 %4° ), and so except for normalization many of the entries for the
tables used in India and perhaps also by Hipparchus are computed in

Archimedes’ text, and all the entries are easily found using Archimedes’
method.

Thus, denoting the opposite side, the adjacent side, and the hypotenuse by
a, b, and ¢ Archimedes finds for the circumscribed sequence of right
triangles ratios of the following values:

a b c
30° 153 265 306
15° 153 571 591 1/8
7Y5° 153 1162 1/8 1172 1/8
3%4° 153 2334 3/8 2339 3/8
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The entries in the first row result from Archimedes’ lower bound on \/g ,
while the entries in row i+1 follow from those in row i using Archimedes’
algorithm:

a4, =4
b, =b+¢

2 2
¢, =Ala,, +b

i+ i+l i+l

The ratios for the complementary angles 60°, 75°, 82%4°, and 86%4° are
trivially obtained by interchanging columns a and b, and we now have the
ratios for eight of the 23 non-trivial angles in the sequence. We may get an
additional eight values by applying Archimedes’ algorithm to the angles 82
Y °, yielding the table entries for 41%4° and 48%°, to the angle 75°, yielding
the entries for 37'4°, 524°, 18%°, and 714°, and to the angle 52 °,
yielding the entries for 26%:° and 63%°. Thus we get:

a b c
41V4° 1162 1/8 1324 7/8 1762 3/8
37Y5° 571 744 937 7/8
18%4° 571 1682 1776 1/4
26Y4° 744 1508 7/8 1682 3/8

and the ratios for the complementary angles again come from interchanging
aand b.

Thus 16 of the 23 table entries are immediately available directly from
Archimedes’ text. To get the remaining seven entries it is necessary to
repeat Archimedes’ analysis beginning from a 45° right triangle and bounds

on \/5 . If Archimedes used the bounds

1393 571
985 <V2< 408

then one would find for the sequence of circumscribed triangles ratios of
the following values:

a b c
45° 985 985 1393
22Y4° 985 2378 2573 7/8
11%4° 985 4951 7/8 5049
33%4° 2378 3558 6/8 4280 1/8
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and the ratios for the complimentary angles 67%4°, 78%°, 56%° again follow
from interchanging a and b.

The analysis of the inscribed triangles follows the same algorithm but

instead begins with the upper bounds on \/§ and \/E . The resulting
bounds on the ratios are so close that for all practical purposes — let us
remember, these are used for analysis of measured astronomical angles, and
we use linear interpolation for untabulated angles — we can use either set, or
their average, with no appreciable difference in results. Here is the entire
set of entries:

circumscribed inscribed circumscribed inscribed

Angle a c a c Base 3438 Base 3438
36/8 153  23393/8 780 11926 225 225
74/8 153  11721/8 780  59757/8 449 449
112/8 985 5049 408 2091 3/8 671 671
15 153 591 1/8 780 3013 6/8 890 890
186/8 571 1776 2/8 2911 9056 1/8 1105 1105
224/8 985 25737/8 408 1066 1/8 1316 1316
262/8 744 1682 3/8 3793 6/8 8577 3/8 1520 1520
30 153 306 780 1560 1719 1719
336/8 2378 42801/8 985 1773 1910 1910
374/8 571 9377/8 2911 47817/8 2093 2093
412/8 1162 1/8 1762 3/8 5924 6/8 8985 6/8 2267 2267
45 985 1393 408 577 2431 2431
48 6/8 1324 7/8 1762 3/8 6755 7/8 8985 6/8 2584 2584
524/8 744 9377/8 3793 6/8 4781 7/8 2727 2727
56 2/8 3558 6/8 4280 1/8 1474 1/8 1773 2858 2858
60 265 306 1351 1560 2977 2977
63 6/8 1508 7/8 1682 3/8 7692 7/8 8577 3/8 3083 3083
67 4/8 2378 25737/8 985 1066 1/8 3176 3176
712/8 1682 1776 1/8 8575 4/8 9056 1/8 3255 3255
75 571 591 1/8 2911 30136/8 3320 3320
78 6/8 4951 7/8 5049 2051 1/8 2091 3/8 3371 3371
824/8 1162 1/8 1172 1/8 5924 6/8 5975 7/8 3408 3408
86 2/8 2334 3/8 2339 3/811900 4/8 11926 3430 3430
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In the table above, for each angle in col. 1 cols. 2-3 and cols. 4-5 give the
lengths of the opposite side and the hypotenuse for the circumscribed and
inscribed triangles, respectively, in Archimedes’ method. Cols. 6 and 7 give
the rounded length of the opposite side assuming the hypotenuse has length
3438 parts, corresponding to a circumference of 21,600 parts. Note that for
all 23 angles the ratios for each angle are identical to the level of
approximation used.

Therefore, we see that using Archimedes’ method, and in many cases the
very numbers that appear in his text, anyone could have assembled the table
in increments of 3%° that was used in India and might have been used by
Hipparchus. The two steps needed to go beyond Archimedes are (a) a
normalization convention, and (b) an interpolation scheme, and there seems
no reason to doubt that any competent mathematician of the time would
have the slightest trouble dealing with either issue. We are certainly in no
position to say that Archimedes himself constructed the table, or who in the
century between Archimedes and Hipparchus did it, but it is clear that by
the time of Archimedes’ paper all the needed tools and results were in
place, except possibly for the motivation to actually organize the table.

We can, in fact, go even farther back into the very early history of
trigonometry by considering Aristarchus’ On Sizes and Distances (Heath
1913), and we shall see that a plausible case can be made that his paper
could easily have been the inspiration for Archimedes’ paper. The problem
Aristarchus posed was to find the ratio of the distance of the Earth to the
Moon to the distance of the Earth to the Sun. He solved this problem by
assuming that when that the Moon is at quadrature, meaning it appears half-
illuminated from Earth and so the angle Sun-Moon-Earth is 90°, the Sun-
Moon elongation is 87°, and so the Earth-Moon elongation as seen from the
Sun would be 3°. Thus his problem is solved if he can estimate the ratio of
opposite side to hypotenuse for a right triangle with an angle of 3°, or
simply what we call sin 3°. In addition, for other problems in the same
paper Aristarchus also needed to estimate sin 1° and cos 1°.

Aristarchus proceeded to solve this problem is a way that is very similar to,

but not as systematic as, the method used by Archimedes. By considering
circumscribed (Fig. 2) and inscribed triangles (Fig 3) and assuming a bound

on \/5 Aristarchus effectively establishes bounds on sin 3° as
1 : ° 1
55 <sin3" <%
and, although he does not mention it, this also establishes bounds on 7 as

3<m<3t
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Figure 2. BE is a diameter of the circle, angle EBF is 45°, angle EBG is 22'4°, and
angle EBH is 3° (not to scale). Since EBG/EBH = 15/2 then GE/EH > 15/2.

Since FG/GE = /2 > 7/5 then FE/EG > 12/5 = 36/15 and so FE/EH >
(36/15)(15/2) = 18/1.

N

Figure 3. BD is a diameter of the circle, angle BDL = 30°, and angle BDK
= 3° (not to scale). Since arc BL = 60° and arc BK = 6° then
BL/BK < 10/1. Since BD =2 BL then BD/BK < 20/1.
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Later, in Propositions 11 and 12 Aristarchus proves using similar methods
that
1 . ° 1
% <sinl’ < %
and

89 °
o <cosl” <1

always understanding, of course, that what we write as sine and cosine was
to Aristarchus a ratio of sides in a right triangle. None of these bounds are
particularly tight, and it is difficult to know if this was the best Aristarchus
could do, or whether it was simply adequate for his purposes, which is
apparently the case in any event.

The similarities between Aristarchus’ and Archimedes’ methods are clear:

both assume bounds on a small irrational number, and hence effectively on
the value of sin a for some relatively large angle, 60° or 45°, and through a
sequence of circumscribed and inscribed triangles on a circle establish

bounds on a target small angle, 3° for Aristarchus and 17%° for

Archimedes. Archimedes clearly realizes that this established bounds on 7;
Aristarchus may or may not have realized it, or might have not considered
his bounds interesting enough to mention. Both Aristarchus and
Archimedes are focused firmly on the relations between angles and ratios
of sides in right triangles, neither ever using anything related to the chord
construct used by Ptolemy. We know that Archimedes and Aristarchus
exchanged correspondence, and we know that Archimedes was well aware
of Aristarchus’ work on the Earth-Moon—Sun distance problem. Indeed,
Archimedes tells us that his own father also worked on the problem. In any
case the parallels in the two calculations are quite striking, and it is not hard
to imagine that Aristarchus’ calculation could have been the inspiration
behind Archimedes’ calculation.

Coupled with the fact that the sin and not the chord is used also in the
Indian texts, this suggests that the chord was introduced later rather than
sooner, and certainly offers no encouragement to anyone claiming that
Hipparchus used chords or that the sine was invented in India as an
‘improvement’ over the chord.
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An Early Use of the Chain Rule

Dennis W Duke, Florida State University

One of the most useful tools we learned when we were young is the chain
rule of differential calculus: if (&) is a function of a, and a(?) is a
function of ¢, then the rate of change of ¢ with respect to 7 is

dg _dq da

dt  da dt

In the special case that a(?) is linear in 7, so a(¢) = o, + @,(t—1t,) , this
becomes

dg d

dg _dg

dt  da

If g(a) is a complicated function of a, for example

g(a) =tan™ (

—esina
R+ecosa

then the computation of dq/do is not necessarily easy. In this case

dg _ —e/Rcosa—(e/R)’
da 1+2e/Rcosa+(e/R)’

so when e/R is small we have simply

d
X~ osa

da R

In cases like this a practical alternative is to tabulate g(«) at small intervals
Aa and then estimate dq/do. as a ratio of finite differences:

dq(a@) _ q(a+Aa)—q(a)
da Aa

Dennis Duke Early Use of the Chain Rule

This particular function g(a) in our example is, of course, the equation of
center for the simple eccentric (or, equivalently, epicycle) model used by
Hipparchus and later Ptolemy for the Sun and the Moon (at syzygy), and it

connects the mean longitude A and true longitude 4 according to
A=A +q(@)

where @ = A — A and A4 is the longitude of apogee. As we shall see,
Ptolemy very clearly knew that the rate of change with time of the true
longitude 4 is

di dg

- = a)l + w{l -

dt da

where o, and w,, are the mean motion of the Moon in longitude and
anomaly. Actually proving the chain rule is straightforward enough, but not
entirely trivial, although perhaps in this simple case it might be guessed by
dimensional analysis. As is often the case, Ptolemy gives no hint of how he
came to know it.

It is, I think, not as widely appreciated as it might be that the result just
given appears in Ptolemy’s 4/magest, not once but twice, and so was
known at least as early the 2™ century CE, and very probably was known to
Hipparchus in the 2™ century BCE, therefore nearly two millennia before
the development of differential calculus (for standard treatments see, e.g.
Neugebauer 1975, 122-124, 190-206 or Pedersen 1974, 225-226, 341-343).

The first occurrence of this result is found in A/magest VI 4. Ptolemy has
just completed explaining how to compute the time 7 of some mean
syzygy — a conjunction or opposition of the Sun and Moon in mean
longitude — using their known mean motions and epoch positions in mean
longitude and anomaly, and is ready to show how to estimate the time

t =1 + St of the corresponding true syzygy. Therefore let us consider the
case of a mean conjunction at some time 7 , so that

As(T) =2, (7)
and work out what Ptolemy would do if he knew calculus.

Since we know the mean anomalies & (7 ) and ,,(7) at time ¢ we can

also compute the equations g, (c(7)) and g, (c(7)) . At time ¢ of true
syzygy we have
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As (0)+ g (g (1) = 4, (1) + G, (2, (2))

(with, of course, the addition of 180° on one side of the equation in the case
of an opposition). Since the mean longitudes vary linearly in time we have
simply

Zu n= ZM (t_ +61) = ZM (f_) + wr(St

As(t) = Ag (T + 61) = A, (1) + 0,5t
where wg is the mean motion of the Sun, so that
ZM (t) - Zs (Z) = ((0, — Wy )5t = 775’ =d{s (as (t)) —4u (a}\/ (’))

Furthermore, since o¢ is small compared to the orbital period of the Moon,
and even more so the Sun, we have

0 @0 ) = 4 D)+ L] 051
=q,/(a, (t_)) + waé‘tdq—M
da t=t
- dq 2
g5 (a5 (1) = g5 (as (1 ))+5t? . +0(ot)

_ de
= g (s (7)) + 0,0t 15
do

1=t
noting that for the standard solar model of Hipparchus and Ptolemy the
mean motions in longitude and anomaly of the Sun are equal since the solar

apogee is tropically fixed.

Combining these and solving for J7 gives

St = g5 (ag (1))- g, (2, (1))

ud | a)Sd
ayl, lag|

1=t

Ptolemy, of course, does not know how to do a Taylor expansion
approximation, but the result he gives is uncannily similar. First he instructs
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us to estimate the true distance between the Sun and Moon at mean syzygy,
which we see from the above is

qs (a5 (1) =g, (@, (1))

He then says to multiply this by '}, and to divide that result by the Moon’s
true speed, which he estimates as

0;32,56"""~0,32,40"" (q(a +17) — q(cx))

where 0;13,56"/hr is the Moon’s mean motion in longitude w, expressed in
degrees per equinoctial hour, and similarly 0;32,40°™ is the hourly mean
motion in anomaly. Note also that

g(a+1°)—qg(a) _ Aq
gla+19)-qle) = L0 2
1 Aa|,_;
so Ptolemy has estimated dg/da with a finite difference approximation, and

furthermore chosen an interval Aa = 1° that, at first sight, cleverly avoids
an otherwise bothersome division operation.

So in the end his estimate of the correction J¢ to the mean time 7 is, in units
of equinoctial hours,
1=t ]

St = g5 (as (1) =g, (e, (1))
which compares very closely to the more exact result derived above, the
only differences being that he has two approximations in the denominator:
first, he gives

12 0;32,56°+ 0;32,40°%
13 a,,

%x 0;32,56 =0;30,24

which is a good approximation to # = 0;30,8, and second he neglects the
term proportional to dgs/dog which is smaller than the already small
(compared to 0;32,56) derivative of the Moon’s anomalistic equation of
center.

Although Ptolemy’s scheme of estimating dq / da = g(a+1")—q(a) is

certainly one option, it is not necessarily the best option when the task is to
make the estimate using a table of g(a) values, especially the table found in
the Almagest, where the table entries are either 3° or 6° apart.. For one
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reason, it requires two table interpolations. Yet these can be easily avoided
if the instructions are instead to find the interval in which a lies, i.e. find a;

and a;; such that ¢; < @ < @,,; (which can be done by inspection), and
then estimate dg/da using

dq(a) _ q(@.,,)—q(@;)
da 0y~ ¢

which, given the piecewise linearity of the table, is about the best estimate
you can make in any case without resorting to a higher order interpolations
scheme. Furthermore, the quotients on the right hand side of the above
equation could all be precomputed and included in the table and would be
useful for all table interpolations, but that is not done in the A/magest. Thus,
the procedure that Ptolemy describes would make a lot more sense,
especially in terms of computational efficiency, if the table was compiled
with an interval of 1° in the variable a. Strabo tells us that for geography
Hipparchus did compile length of the longest day at intervals of 1° in
terrestrial latitude, so it would not be too surprising if Hipparchus had 1°
tables for lunar, and for that matter, solar anomaly.

Ptolemy goes on to estimate how close to the nodes the Moon has to be
before an eclipse is even possible. For lunar eclipses this is straightforward,
but for solar eclipses a rather involved calculation involving lunar parallax
is required, lunar parallax having already been analyzed in detail in
Almagest V 17-19. Ptolemy then discusses the allowed intervals (in
months) between lunar and solar eclipses. Besides the common six month
interval, it turns out that lunar eclipses can also occur at five month, but not
seven month, intervals, and solar eclipses can occur at not only both five
and seven month intervals, but also at one month intervals, provided the
observers are at widely different locations, including being in different
(north and south) hemispheres.

Related to all this is a passage in Pliny’s Natural History, written ca. 70
CE, which says

It was discovered two hundred years ago, by the
sagacity of Hipparchus, that the moon is sometimes
eclipsed after an interval of five months, and the sun
after an interval of seven; also, that he becomes
invisible, while above the horizon, twice in every
thirty days, but that this is seen in different places at
different times.
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For Hipparchus to know all this, and in particular the part about solar
eclipses at one month intervals, requires that he had a significant amount of
computational skill, including a reasonable command of lunar parallax.
Indeed, Ptolemy tells us that Hipparchus wrote two books on parallax.
Therefore it is hardly a stretch to presume, with Neugebauer 1975, 129 and
Pedersen 1974, 204, that Hipparchus already knew the eclipse material
reported by Ptolemy in the A/magest, including the use of the chain rule
discussed above.

Besides using the instantaneous speed to estimate the time difference
between mean and true syzygy, it is also needed to estimate for lunar
eclipses the time difference between first and last contact with the Earth’s
shadow, and in the case of total lunar eclipses, the time interval of complete
immersion (and, of course, similarly for solar eclipses).

The second occurrence of the use of the chain rule is in A/magest VII 2
concerning retrograde motion. Ptolemy begins by recalling Apollonius’
treatment (from perhaps 180 BCE) of the simple epicycle model, in which
the distance from the Earth to the epicycle center is constant. The ratio of a
particular pair of geometric distances is, according to Apollonius’ theorem,
equal to the ratio of the speed w, of the epicycle center to the speed w,, of
the planet on the epicycle, both of which are constant in the simple model.
However, in the case of the more complicated A/magest planetary models —
the equant for Saturn, Jupiter, Mars, and Venus and the crank mechanism
for Mercury — the relevant ratio is between the true speeds v, and v, as
observed from Earth, which are not constant, and this once again involves
using the chain rule, just as above:

a)+@ w+a)’ﬂ
didt " g _ " da
dA,/ldt a)a+@ co(ﬁco,’ﬂ
dt da

where @] is o, diminished by 1°' to account for the sidereally fixed

apogees in the 4/magest planetary models. In this case Ptolemy does not
actually explain how to compute the numerical derivatives for dg/da, but
the numerical values he gives for each planet confirm that he was using the
tables of mean anomaly in A/magest XI 11, or something pretty close to
them.

Returning now to eclipses, the natural question to wonder about is whether
this careful estimate of the instantaneous speed is worth the effort? For
example, how much difference would it make in eclipse predictions if in
the calculations the mean speed 7 was used instead of the accurately
calculated speed? In order to investigate this questions I have computed,
using the Almagest rules, all 977 lunar eclipses from —746 to —130.
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The speed is used two ways. First, it is used to compute the difference in
time between mean and true conjunction, the eclipse being taken to occur at
true conjunction rather than at minimum distance from the shadow center.
This latter approximation is a good one, the time difference between true
conjunction and minimum distance averaging less than 2 minutes and never
exceeding 6 minutes, no matter which speed, mean or instantaneous, is
used. On the other hand, the estimates of the actual time of true conjunction
vary by about 19 minutes on average, and for about 40% of lunar eclipses
the time difference exceeds 20 minutes, with a maximum difference of
about 48 minutes.

Second, the speed is used to compute the duration of partial and total
eclipse. Considering just partial eclipses, which are probably the easiest to
time and show the largest effect in any event, the average difference in
computed duration is about 12 minutes. and for about 14% of lunar eclipses
the difference of computed duration of partial eclipse time interval exceeds
20 minutes, with a maximum difference of about 41 minutes. The
differences that exceed 20 minutes arise when the eclipses have low
magnitude, so that a relatively small change in the latitude of the Moon can
result in a relatively large change in the path length needed to cross the
shadow.

Altogether then, it seems reasonable to me that these differences in
predicted absolute time and duration of lunar eclipses, while not exactly
dramatic, are large enough to suggest a motivation for the ancient
astronomer to compute the times using the instantaneous rather than the
mean speed.

All of this by no means implies that differential calculus as we know it was
understood by ancient mathematicians, but it does show that when they
needed to solve a special problem, such as the one above, they were in
some cases able to do it.
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