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Summary. A rigorous method is developed for the exact solution of the
extrema of the total tidal field on a spherical celestial body, disturbed by a
multiplicity of gravitating point masses distributed in three dimensions at
distances large relative to the disturbed body’s size. A short program is
provided for convenient use of the method. As an illustration, maximal solar
tides due to planetary attraction are calculated for the Solar System 1964—
1991.

Introduction — tidal investigations

Recent decades have seen an abundance of attempts to correlate tidal effects on the Earth,
Sun or stars with:

(a) volcanic eruption (Mauk & Johnston 1973; Heaton 1975);

(b) earthquakes (Tamrazyan 1967; Gribben & Plagemann 1976);

(c) Earth-spin (Gribben & Plagemann 1976, chapters 7 and 9);

(d) solar flares (Blizard 1968);

(e) sunspots (Loomis 1866, p. 244; Bigg 1967; Takahashi 1968; Wood 1972) (such a
study is proceeding currently at one of the major national observatories (private corres-
pondence));

(f) even starspots (Mullan 1974).

With one exception, I will not enter here into the question of validity regarding any of
the alleged correlations. My primary concern is with the fact that a number of these investi-
gations would be rendered more efficient and more accurate by the availability of a rigorous
means of determining the height (which we will henceforth call the upper-case Tide) — and |
the location on the disturbed body — of the highest point of the total equilibrium tide due |
to the sum tidal forces of any given moment’s configuration of disturbing bodies.

The need for such a method of finding the Tide is dramatized by the expedients (resorted
to in its lack) of some of the above-cited papers, e.g. Takahashi (1967), which evidently
calculates planet-induced tides around the entire solar equator to find the maximum (the
Tide) by trial, or Wood (1972), which employs the primitive and ultimately quite mis-
leading device of basing its deductions upon the sum of tidal oompomnholbmm
pre-chosen planet’s radius-vector.
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Therefore, I have devised a completely general method of solution, which will determine
the magnitudes and locations of the extrema of the total tide on a spherical body disturbed
by any number of point masses, distributed in any way in three dimensions (at distances
which are large relative to the size of the disturbed body).

Such a method is likely to find uses not yet tried. For example, we are just entering into
an era of close-up investigation of other planetary systems (most possessing more than one
satellite). And, to add a speculative possibility: it may be that ‘irregular’ variable stars’
pulsations will be explained in part from tidal effects of companions.

Calculating the total tidal field

For a complete solution to the problem, one starts with the well-known equation for the
tidal potential U due to point mass 7 (at distance 7 from the disturbed body’s centre):

U=—Gmr'rP,(cos ) (1)

where G =universal gravitation constant; r=the field point; r'=source point; & =the angle
between these two vectors; P, is the second Legendre polynomial. (It is presumed that r < 7’
throughout, so that higher orders are not required here.)

Equation (1) is most conveniently dealt with in a Cartesian form (employing the usual
repeated-index summation-convention below, except where indicated):

U= —(a/2) 3xpxpxxi — R*xgxg) 2
where a=GmR S and R =r'.

The grad of equation (2) provides an expression for the tidal gravitational field g
(directly due to the external mass m):

gj= —U[dx; = a(3xyx; xj — R x;) (3)
which, for multiple tidal-influencing bodies m;, becomes (summing i once only, over all m;):
&= 0; (3 x3i%j; — Rl x)) (4)

(where o; = Gm;R[®), the total tidal force. (The word “directly’ is used because the tidal shift
itself produces a change (quantified in the general second order tidal problem via the Love
numbers #, and k,) due to the additional effects of: (a) radial displacement of field point on
the disturbed surface (h,); (b) self-gravity of the tidally shifted matter (k). The tidal height
is affected by the factor 1 +k,; radial field, by the factor 1 +/,—1.5 k,.) If one sets

Cix = 0 (3xjiX3; — R?8j1), 3
a symmetric tensor, then equation (4) reduces to a simple expression
8= CixXx - (©6)

Equations (4)—(6) provide an exact solution for g as a function of position r.

Finding extrema on the disturbed sphere

Determination of the extremal tidal field strengths on the surface of a disturbed spherical
body (e.g. the Sun) now requires the diagonalization of C.

The secular equation will be cubic, since the problem is in three dimensions. The three
eigenvectors will represent the axes of symmetry of the ellipsoidal equipotential surface
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resulting from the total tidal disturbance, After equation (6) is transformed to the eigen-
vector reference frame, C is diagonal: thus each eigenvalue A, corresponds to a simple
solution (n not summed):

%l (7)

radially along the eigenvector axis X
At the sphere’s surface, Xp =a, the radius (effectively constant), so each
&n = ahy; &

thus (merely adjusting for the constant factor a) the eigenvalues ), are identical to the
extremal values (maximum, saddlepoint, minimum) for the tidal strength g. This suggests a
valid short cut for one interested only in the maximum (the Tide), i.e. merely solve C’s
secular equation. (The rest of the diagonalization process is only concerned with orientation.)
The largest of the three \,, is the Tide.

The method described above may easily be generalized to the case of tidal disturbance by
a continuum of matter.

The tidal height

To determine, in length units, the equilibrium height & (above the surface of the hypothetical
undisturbed sphere) of the tidal distortion, use the equipotential condition: the change of
gravitational potential of matter shifting radial distance % in response to the tidal field must
balance the tidal potential U; that is (taking M for the disturbed mass):

fa M(— GMr*)dr+U=0. 9)

Since h < a, equation (9) becomes

h=—[a®[(GM)] U. (10)

(Thus, if the height, radial field, and potential are normalized, we have i =g, =— U every-
where on the sphere, although to be scrupulous, we must say that, on the actual tidally
distorted non-spherical (ellipsoidal) surface, the radial displacement (%) of course causes a
potential change nullifying U (from the equipotential condition). For the Sun, this same
radial displacement (h) doubles g, since the Sun’s k,=0 and (because a fluid body’s hy=
1+ky) hy=1.)

Substituting equation (1) into equation (10) yields, for one disturber (using 7=z on the
disturbed sphere, and r’' = R), the simple relation:

h = (m/M) (a*/R?) Py(cos0). (D
For the single-disturber case, the Tide obviously occurs at @ =0 (P,=1), where we set h=H -
thus, from equation (11):

H=a(a/R)*(m/M). (12)

As a useful illustration, we find, on the Sun S, the Tide Hg induced by an adopted ET
unit disturbance, namely, that due to the mean distance Earth E. Substituting into equation

(12) the mass ratio (Earth +Moon)/Sun = 1/328900 and ag/Rg =16'01"18 =1/214.5954 and
Ry =1A0=1.496x 10" m, we find the ET unit tidal height.

Hg =0.2145 mm. (13)
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However, it must be noted that the foregoing treatment works so simply for the S.un only
because most of the Sun’s mass is concentrated relatively near its centre (because of central
mass concentration, the Sun’s k,=0).

Sample computation — solar Tide 1964—1991

As an example of the method’s use, the planet-induced Tide on the Sun was computed (all
nine planets — elliptical orbits) every 5 day throughout a period of 9725 day (26.63 yr)
from Julian Day 2438520.5 to JD 2448245 5 (Besselian dates 1964.34—1990.97). The solar
Tide’s highs and lows over time are listed in Table 1, expressed in ET units (equation 13).
To find the Tide in millimetres, simply multiply the Tide values of Table 1 by the ET unit
height Hg, 0.2145 mm.

Peaks in the solar Tide exceeding 7 ET units occur in 1977.97, 1984.47 and 1990.02. The
highest (at 1990.02) is about 1.6 mm.

With regard to the alleged ‘Jupiter effect’ (Gribben & Plagemann 1976) — a solar Tide-
induced super 1982 earthquake — we note from Table 1 that 1982 has the second lowest Tide

Table 1. Temporal relative maxima and minima of solar Tide (ET units), 1964.
34-1990.97.

Date Tide Date Tide Date Tide Date Tide Date Tide Date Tide Date Tide
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peaks of the 27 years (1964—-1990) covered in Table 1. (The weakest year of all is 1980, the
time of the latest sunspot cycle’s peak, which the ‘Jupiter effect’ had correlated to a
supposed solar Tide relative maximum.) The curious circumstance is directly due to the fact
that the authors’ Sun Tide predictions were based on Wood’s method — discussed above —
which included the tidal effects of only Venus, Earth and Jupiter using circular orbits.
Ironically, the inclusion of Jupiter’s non-trivial orbital eccentricity inverts the ‘Jupiter
effect’, virtually reversing the high and low peak-Tide times.

It is hoped that the availability of a reliable table of solar Tide behaviour for 2 2/3
decades, and a short program for computation (Appendix B), will ease the labour (and sub-
sequent evaluation) of future researches in this area, ensuring a firm calculational basis from
the start.
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Appendix A: proof of extremeness

If the potential, equation (2), is partially differentiated and set zero (to find the stationary
points), in tandem with the equation

Xpx, =d* (A1)
for the surface of the disturbed sphere as a constraint associated with a Lagrange multiplier

Jfox; = N39x; (xpxp) = N2%p & pj = 20x;j. (A2)

ing equations (2)—(6) into equation (A2), and altering the arbitrary constant A
5r, —2: {
¢

‘..N!i. (A3)

on of equation (A3) to equations (6)—(7) establishes the effective identity of
 and Lagrange multiplier, and the fact that the potential U is indeed stationary
envector principal axes, x,,.

radial component of g) is everywhere on the sphere equal to —2U/a (one
constant ratio, —2/a, via normalization), the radial component of the tidal
nary on these axes (where, incidentally, g is entirely radial).
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To prove that the magnitude of the full vector g is stationary there, as well, we repeat the
above test, now upon g2, again using equation (A1) as constraint, this time with a Lagrange
multiplier ', and substituting equation (6):

B/axj(gkgk) =28k ag,,/ax,- = ZCkm Xm aIBXJ(Ck;X1) 4 2?\'x,-. (A4)
This reduces to (taking unnecessary advantage of C’s symmetry):
Cix Ckm*m = DjmXm =\'x;; (AS5)

to show that the former eigenvector solutions satisfy this new condition, put equation (A3)
into equation (AS), twice successively:

Cix k) =N (G xi) = A %)) =A%x; = N\'x;. (A6)

Thus, letting A" = A2, the condition equation (A5) for stationary g (or g?) is indeed met at the
principal axes.

As to whether the eigenvector positions represent maxima, minima or saddlepoints: if the
second partial derivatives of U(=—%Cjyx;xy) and g2 (=Dj, x;xy) are examined in the eigen-
vector reference frame (i.e. after diagonalization, when U= — %Aix,?, Afxf, j summed
once), under the constraint, equation (A1); then, at the nth stationary point, the Hessian of
constrained U is:

Mn —N) 8k (A7)

while that of constrained g2 is:
200 — A7) bjxs (A8)

j is not summed in equations (A7) and (A8).
In the general case of non-equal eigenvalues, we set the convention:

R1> h2> Rg. (A9)

1 Noting from equation (5) the nullity of C’s trace, we have (since the trace is invariant under
the similarity transformation which diagonalizes C):

A #Ap+25=0. (A10)
From equations (A9) and (A10), we see that A;> 0 and A3< 0, and that:
A > A<k (A1D)

Applying inequality (A9) to equation (A7) and inequality (A11) to equation (A8), it is
easily seen that: at eigenvector #1, U is a minimum; at #2, g is a minimum; at #3, U is a
maximum; g is a maximum at #1 if A3> A%; at #3 if the reverse. Generally, for multi-body
planet or satellite systems,

A>3 M fA15)

¢ ¥ !m the Solar System in particular: eigenvector #1 is nearly parallel to the ecliptic; the
- same is usually true of #2; #3 is usually about perpendicular to the ecliptic (exceptions)
un-planets near-line-ups: near-degenerate A, and \ 4, high \,).
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Appendix B: program for automatic calculation of tidal extrema

From the foregoing, the following BAsIC-PLUS program has been compiled. Given the

 disturbed body’s mass and radius and the masses and positions of the disturbing bodies, the

program computes the tidal extrema (length units) and associated principal axes of the
_ disturbed body’s equilibrium tidal ellipsoid.

ggg ‘n_‘!'ﬁncm QuZERIMAT R=ZER

Li; 1)t2 FOR J=1 TO 3
i LHHTE

+c(1.3)~c(z 2)sC(3
1)-C(3,1)#C(1,2)=C(2
)#C(3,3)+C(3,3)*C(1
3)#C(3,2)-C(3.1)eC(1

‘ um(mn-zapn{?

(? -F(N -c(z 3)«-6(3 2)
)-C(3,1)=C

)=c(2, 1)'6 3.2)

t2 FOR J=1 TO 3
R(Q(N)) FOR J=1 TO 3




