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‡3 Code-breaking in the second world war
by Hugh Thurston1

A The initial break into Enigma
A1 Some time before the outbreak of the second world war the Poles began intercepting
German code messages with a very distinctive feature. Here are the beginnings of some
messages received on the same day. (Not the actual messages, of course; I have made up
some examples to illustrate the Polish cryptographers’ methods.)

1 d h z e c n w k . . .
2 a l w r w p f u . . .
3 s v g w s r j q . . .
4 d e b e k h p q . . .
5 h q x h a z m c . . .
6 h e c h k l w o . . .
7 u q b g a h e l . . .
8 a q c r a l w g . . .
9 z w j v i c k d . . .

10 m u m x r o w j . . .
11 r s e o p u m n . . .
12 s p q w q q x o . . .
13 e f d p h f r j . . .
14 e m a p e d l v . . .
15 f n a m f d p q . . .

A2 The feature is that whenever two messages have the same first letter they have the
same fourth letter. For example, messages 2 and 8 both have first letter a and fourth letter r;
messages 1 and 4 both have first letter d and fourth letter e, and so on. Similarly, whenever
two messages have the same fourth letter, they have the same first letter. The same relation
holds between the second and fifth letters and between the third and sixth letters. This is
something which any cryptographer would spot, but the Poles continued with something a
good deal more subtle. They looked at the correspondences between the first and fourth
letters:

First d a s h u z m r e f
Fourth e r w h g v x o p m

and began to build them up into chains. From de and ep they formed dep and so on.
They had far more than the fifteen messages I have displayed (at least eighty each day) and
managed to incorporate all the letters of the alphabet, the final result being

(depzvlyq)(aronjfmx)(gktu)(icsw)(b)(h) (1)

1Professor Emeritus of Mathematics, University of British Columbia. It should be emphasized here
that Thurston took part in the very code-breaking that is the subject of this paper — and which helped
the Allies win World War 2, one of the few just war-efforts human history can boast of.
[Note added 2008/11/5. At Midway (1942/6/4), the Allies’ code-breaking edge was instrumental in
the Japanese invading fleet’s sudden simultaneous loss of 3 of its 4 aircraft-carriers and thus most of its
c.300 airplanes & veteran ace pilots . (Its commanders had learned of the US’ nearby-lurking 3 carriers
only 2h earlier and could not prepare a full attack in time, an attack that indeed was just being launched
at the very minute when elated US dive-bombers struck.) Yet, before Japan’s entire 300-plane force
was lost (along with the 4th carrier), just 16 of the final few planes sank the US carrier Yorktown, in
retaliation, suggesting that had Japan’s original full 300-airplanes been available to strike at the Allied
fleet, the Battle of Midway would’ve ended quite differently.]
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These chains are cyclic; not only does d as first letter correspond to e as fourth, but q (the
last letter in the first chain) corresponds to d, the first in the chain. So I shall refer to them
as cycles rather than chains. Note that h corresponds to itself; so does b.
A3 The corresponding results for second-to-fifth and third-to-sixth are

(axzlwiobyvspq)(hcurtmekdgjnf) (2)

and

(adfbhgrsywpk)(znmoieutjclx)(q)(v) (3)

Now we notice another striking feature. Each of these results contains two cycles of each
length: (1) has two of length 8, two of length 4, and two of length 1; (2) has two of length
13; (3) has two of length 12 and two of length 1. To anyone familiar with the mathematical
theory of permutations — and the Polish cryptographers were mathematicians — this rings
a bell.
A4 The connection between cryptography and the theory of permutations is that an
encoding is a permutation. If we write out the alphabet and under each letter write its
encode, for example:

Original abcdefghijklmnopqrstuvwxyz
Encode hiewdfvxgybuctramnskzqjlop

then the encoding permutes the top row into the second row.
A5 There is a standard way of writing permutations. Here a permutes to h, so we write
ah. Also h permutes to x, giving us ahx and so on. Continuing in this way, we write the
above permutation in cycles as

(ahxluzp)(bigvqmcedwjyorntk)(f)(s)

We represent permutations by capital roman letters. The letter into which A permutes x is
denoted by xA. If we apply permutation A and then apply permutation B to the permuted
letters, the resulting permutation is denoted by AB and called the composite of A with B.
For example, if A is (abc)(de)(f) and B is (ac)(be)(df), then A sends a to b and B sends
b to e, so AB sends a to e and one of its cycles starts ae. You can easily check that AB
is (aefdb). The result of applying AB to x is the same as applying B to xA, so x(AB) =
(xA)B, and we can write the result unambiguously as xAB. Similarly (AB)C = A(BC) =
ABC, the result of applying first A, then B, then C.
A6 If X is an encoding, the corresponding decoding is denoted by X−1, it is the reverse
permutation and its cycles are the cycles of X reversed. A permutation in which every cycle
has length 2 is called a pairing. If X is a pairing, X−1 = X. The result in the theory of
permutations that rang a bell for the Polish cryptographers is the theorem that the composite
of two pairings must have an even number of cycles of each length (as do (1), (2) and (3)).
A7 We can see why this happens as follows. Suppose that we want XY, where X =
(ab)(cd)(ef)(gh) and Y =(ad)(bh)(cg)(ef), to take a reasonably compact example. In X,
a → b; in Y, b → h; so in XY, a → h. Write this as
a h
b

Similarly
h c and c a
g d

bringing us back to where we started. Putting these together we have the set-up

a h c [a] (4)
b g d
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A8 The northwest-to-southeast pairs are pairs of X, the northeast-to-southwest pairs are
pairs of Y, the top row (ahc) and the bottom row reversed (dgb) are cycles of XY, necessarily
of the same length. We continue in the same way with any unused letters, in this case
e [e]
f

each time obtaining two cycles of the same length. We deduce that each of (1), (2) and (3)
is the composite of two pairings. This is what would happen if each of the six encodings is
a pairing and the first six letters of each message are the first three letters repeated. We can
see this as follows.
A9 Suppose that the first and fourth encodings are X and Y and that they are pairings.
If the first letter in an encoded message is a, the original first letter is aX. If the original
fourth letter is the same, the fourth letter in the encoded message is aXY. The same applies
to any letter, so the first-to-fourth correspondence is XY, a composite of two pairings. This
deduction ties in with what Polish Intelligence had discovered. The Germans had a machine,
the Enigma, which encoded by pairings. It used three rotors, each of which could be set in
26 different positions, which could be denoted by letters. The recipient of a message would
need to know the positions of the rotors, so the message would need to contain a trio of
letters giving this information. It is a good bet that the first six letters of the message are
this trio repeated.
A10 We now have the following problem: given XY, where X and Y are pairings, find
X and Y. To take a simple example, what pairings will give

XY= (ahc)(dgb)(e)(f) ?
The set-up labelled (4) above shows us how to find out. Write the second cycle of XY
reversed under the first cycle. There are three ways to do this:
a h c [a] a h c [a] a h c [a]
g b d g d b d b g

And there is one way to write e under f. We get three solutions:
X= (ab)(hg)(cd)(ef), Y= (ad)(cg)(hb)(ef)
X= (ag)(hd)(cb)(ef), Y= (ab)(cd)(hg)(ef)

and
X= (ad)(hb)(cg)(ef), Y= (ag)(cb)(hd)(ef)

Notice that the two cycles (e), (f) of length 1 imply that in every solution e and f encode
into each other.
A11 It is easy to see that for (1) there are 32 solutions. The next step is to pick out the
right solution, and to do the same for (2) and (3). To do this, the cryptographers used a fact
that we found over and over again in cryptography: ask anyone to choose something “at
random” and the result, though arbitrary, is usually far from random. The German operators
did not choose the settings for the rotors randomly, but showed a strong predilection for
trios like aaa, bbb, etc. or abc, bcd etc.
A12 Let the first six encodings be A, B, C, D, E, F, so that AD is (1), BE is (2) and CF
is (3). From the two cycles of length 1 in (1), we see that in A and D the letters b and h
encode into each other, so messages 5 and 6 start with b. Could either of them be bbb? Let
us start with message 5. If we have

A B C D E F
h q x h a z
b b b b b b

then (qb) must be a pair in B and (ab) in E. This is not possible; in (2) b is in the same
cycle as a and q, so no way of writing the second cycle of (2) under the first will work.
Now let us try message 6. If we have

A B C D E F
h e c h k l
b b b b b b
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then (eb) must be a pair in B and (kb) in E. There is a possible arrangement of (2), namely
a x z l w i o b y v s p q [a]
h f n j g d k e m t r u c

This gives
B = (ah)(be)(cq)(di)(fx)(gw)(jl)(ko)(my)(nz)(pu)(rs)(tv)
E = (ac)(bk)(do)(ey)(fz)(gi)(hx)(jw)(ln)(mv)(pr)(qu)(st)

Again (cb) must be a pair in C and (lb) in F, and again there is a solution.
A13 We can arrange (3) as
a d f b h g r s y w p k [a]
z x l c j t u e i o m n

giving
C = (az)(bc)(dx)(es)(fl)(gt)(hj)(iy)(kn)(mp)(ow)(qv)(ru)
F = (an)(bl)(ch)(dz)(ey)(fx)(gj)(iw)(km)(op)(qv)(rt)(su)

Now let us decipher the rotor-settings using B, C, D and F.
1 .aa 2 .jo 3 .tt 4 .bc 5 bcd

6 bbb 7 .cc 8 .cb 9 .gh 10 .pp
11 .rs 12 .uv 13 .xx 14 .yz 15 .zz

We have a classic case of non-random trios. Messages 1 and 4 start with the same letter;
the trios are obviously aaa and abc. And 13 and 14 will be xxx and xyz. If so, (ad) and
(xe) must be pairs in A and (ae) and (xp) in D. These work well. From (1) we obtain
a r o n j f m x [a]
d q y l b z p e

A14 What about the other cycle? Can message 3 be ttt? It can: we need (ts) in A and
(tw) in D. The set-up
g k t u [g]
i w s c

gives these. We now have the first six encodings and all the rotor settings.
A15 This is not enough to enable us to read the coded messages, but it is a good start.
In §B, we shall see how the Polish cryptographers used six successive encodings (actually
they needed only four) to analyze the Enigma machine. Much has been written about
the successful exploitation of the German Enigma codes by the Allies, starting with F.W.
Winterbottom’s The Ultra Secret. This breakthrough by the Polish cryptographers, on
which the British exploitation was based, was the start of something really big.

B Analyzing the Enigma machine
B1 We saw in §A how Polish cryptographers attacked German messages encoded by a
machine called Enigma. By purely cryptographic analysis of a day’s messages they found
six successive encodings produced by the machine. To follow the next steps we need
to know how the machine was constructed. The military Enigma was modified from a
commercial Enigma that anyone could buy.
B2 The Enigma has a keyboard like the one on a typewriter, except that it has only 26
letters: no numbers, no symbols, and no shift key. The keys are connected by wires to a
plugboard, a board with 26 terminals on each face. Normally when a key — let us suppose
that it is x — is depressed, a current flows from the key to terminal x on the front face of the
plugboard and straight across to a terminal on the other face which I shall call rear terminal
x. However, the operator has six wires, each with a plug on each end. If the two plugs on
a wire are plugged into front terminals x and y they disconnect the two x terminals and the
two y terminals, and connect the front x to the rear y and the front y to the rear x. If the
current goes in at x it comes out at y and vice versa.
B3 From the rear terminals on the plugboard wires go to 26 terminals, which I will call
entry terminals, arranged in a circle. A rotor is a thick disc with 26 terminals, arranged in a
circle, on each face. Each terminal on one face is connected by a wire buried in the rotor to
a terminal on the other face. When one rotor is placed in the machine, each terminal on the
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front face contacts an entry terminal. The rear face of the rotor contacts the front face of a
second rotor, which contacts similarly a third rotor. The rear face of the third rotor contacts
a circle of 26 terminals forming what I shall call a reflector; these terminals are connected
in pairs by wires.
B4 When a key is depressed the current goes through the plugboard to the entry terminals,
through the first, second and third rotors, through the reflector, and back through the third,
second and first rotors to the plugboard. From the front terminals of the plugboard wires
go to 26 small light-bulbs each of which is labeled with a letter. The letter that lights up is
the encode of the letter whose key is depressed.
B5 The current from key x enters the plugboard at front terminal x; if it goes through
rotors, reflector and plugboard and back to terminal y, then current entering at terminal y
would go through the same wires in the opposite direction to front plugboard terminal x.
So if x encodes into y then y would encode into x: each encoding is a pairing, as described
in part 1.
B6 The rotors can be removed from the machine and replaced in any order. There is a
mechanism which makes the first rotor rotate through one twenty- sixth of a revolution each
time a key is depressed. This moves each terminal of the rotor one place round the circle.
The wires buried in the rotor are now in different positions relative to the entry terminals
and so the machine produces a different encoding. At some point the movement of the first
rotor makes the second rotor move on one place. Twenty-six moves later the second rotor
moves again, and so on. The second rotor moves the third rotor in the same way. Anyone
who wants to know what the machine actually looks like will find photographs in Gordon
Welchman’s The Hut Six Story.
B7 The first stage in reading the German messages is to reconstruct the wiring of the
rotors and the reflector. On any one day the order in which the rotors were arranged in the
machine and the connections in the plugboard remained unchanged. Choose four successive
encodings, found as described in part 1, and hope that the second rotor does not move in
the course of them. This will happen twenty-three times out of twenty-six, so the chances
are good. The Polish cryptographers did find suitable encodings.
B8 Let the permutation produced by the plugboard be S. The rotors do not have letters
engraved on the terminals, so let us imagine that the first rotor, in the position it occupies
in the first of the four encodings, has engraved on each front terminal the letter of the entry
terminal that contacts it, and has the same letter on the opposite rear terminal. Then the
rotor produces a permutation of the alphabet, let us call it N. We similarly imagine letters
on the terminals of the second and third rotors and the reflector. The second and third
terminals and the reflector between them produce a permutation which I call Q.
B9 The permutation produced by going back through the first rotor is N−1, the reverse of
N. The permutation produced by going back through the plugboard is S−1 (which actually
equals S). So the encoding is

SNQN−1 S−1

For the next encoding the first rotor has moved one place. Let us see how this affects the
permutation that the rotor produces. The entry terminals are arranged in alphabetical order,
as the Polish cryptographers eventually guessed. (In the commercial Enigma they were
arranged in German typewriter order qwertzu . . .) Let P be the permutation (abc . . .
xyz). The entry terminal after a letter α is αP. The rotor permutes it into αPN. When the
rotor rotates one place it brings the terminal αP back one place to position α and the rear
terminal αPN back to αPNP−1. (When the Poles guessed that the entry terminals were
arranged in alphabetical order they guessed that this order was in the opposite direction to
the direction in which the rotors rotated.) The wire that connected αP to αPN now connects
α to αPNP−1, and the permutation now produced is PNP−1.
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B10 The reverse of a composite of permutations is the composite of the reverses in op-
posite order. That is, the reverse of XY is Y−1X−1. To see this, notice that if we compose
XY with Y−1X−1 we obtain XYY−1X−1. But YY−1 is the permutation which leaves
everything unchanged, so XYY−1X−1 = XX−1. (In fact, whenever a permutation and its
inverse occur next to each other in a composite, they cancel each other.) So XYY−1X−1

leaves everything unchanged, which means that Y−1X−1 is the reverse of XY. If we ab-
breviate PP to P2, PPP to P3, and so on, and P−1P−1 to P−2 and so on, then the first three
of the successive encodings, which I call A, B and C, are given by

A = SNQN−1S−1

B = SPNP−1QPN−1P−1S−1

C = SP2NP−2QP2N−1P−2S−1

}

(1)

We have to find the permutations S, N and Q which make these equations hold. At this
time the cryptographers had a stroke of luck. The French Intelligence Service got hold of
some operating instructions for the military Enigma which gave the plugboard connections
for two months, and passed them on to the Poles.
B11 The permutation S is now known. If we set U = S−1AS, then U is known and, from
(1), S−1AS = NQN−1. If we set V = P−1S−1BSP and W = P−2S−1CSP2 then V and W
are also known and

U = NQN−1

V = NP−1QPN−1

W = NP−2QP2N−1

}

(2)

Then

UV = NQP−1QPN−1

VW = NP−1QP−1QP2N−1

From the first of these, QP−1Q = N−1UVNP−1; substituting this in the second gives

VW = NP−1N−1UVNP−1P2N−1

= NP−1N−1UVNPN−1

If we set F = NPN−1 we have
VW = F−1UVF

To find F, we use a well-known result in the theory of permutations: that to obtain F−1ZF
from Z we write Z in cycles and replace each letter by the letter into which F permutes it.
This gives the cycles of F−1ZF. The reason is that two successive letters in a cycle of Z
are α and αZ. We replace them by αF and αZF. The permutation that sends αF to αZF is
F−1ZF, because αFF−1ZF = αZF.
B12 Conversely, given permutations Y and Z, what permutations F will make Y =
F−1ZF? Unless Y and Z have the same number of cycles of each length no F will do. If
they have, write the cycles of Y under the cycles of Z in all possible ways. Each way
gives a solution. For example, if Z = (ad)(bec) and Y = (be)(adc) there are six possible
arrangements. Two are

(ad)(bec) (ad)(bec)
and

(be)(cad) (be)(adc)

giving F = (abcde) and F = (ab)(c)(de). Each of the other arrangements gives a solution.

Hugh Thurston WW2 Code-breaking 1998 November DIO 8 ‡3 27

B13 If UV and VW do not have the same number of cycles of each length, something is
wrong — perhaps the second rotor moved — but if they do we find the possibilities for F as
above and select those that consist of a single cycle, because F = NPN−1 and P consists of
a single cycle. If there is more than one possibility we use our fourth successive encoding.
Treating the second third and fourth encodings in the way that we treated the first three, we
find another set of possible F’s. The one and only F in both sets of solutions is the F that
we want. (Only by incredibly bad luck could there be more than one. )
B14 Knowing NPN−1 and P we can apply the same method to find N. There will be
26 possible solutions. It does not matter which one we choose: they will all give the same
encodings. We can see this as follows.
B15 If N and O are two possible solutions, then NPN−1 = OPO−1, which means that
O−1NPN−1O = P. So N−1O applied to the cycle of P must reproduce the cycle of P. The
only way that this can happen is for N−1O to push each letter forward through the same
number of places in the alphabet. Then N−1O = Pn for some number n, and O = NPn. So
if the actual rotor gives permutation N, the twenty-six solutions are NPn for n from 0 to 25.
B16 If we take a rotor which gives the permutation N and twist the rear face through
n twenty-sixths of a revolution while holding the front face still, the wire which led from
α to αN now leads to αNPn, so the permutation becomes NPn. The twenty-six solutions
are the actual rotor twisted in this way for n from 0 to 25. But if we twist the rear face of
the rotor through n places we have only to twist the rest of the machine through n places
to re-establish the connections and produce the same encoding. The same method applied
to the second month for which the plugboard connections were known, when another rotor
was in first place in the machine, gives the wiring of this rotor.
B17 For the next step there is no systematic method like the one I have been describing:
cryptography is sometimes more an art than a science. The captured operating instructions
included a sample message and its encoding at a stated setting of the rotors. Using these
instructions and attempts to decode intercepted messages, the cryptographers, by making
trials and adjustments, found the correct solutions for each of the first two rotors and the
wiring of the third rotor and the reflector. They could now build a copy of the machine. To
follow their next steps we need to know how the rotors were set in position.
B18 Each rotor has around its rim the twenty-six letters of the alphabet in order. These
are not fixed to the rotor, but are on a thin metal ring that can slide round the rotor. When
the rotor is put in the machine and the lid is closed one of the letters shows through a small
window. The lug on each rotor that makes the next rotor turn is fixed to the ring, not to the
rotor itself. The operating instructions tell the operator which rotor goes in which place in
the machine, which letter on the ring is set against a zero mark on the rotor (one for each
rotor) and which terminals on the plugboard are connected. It also specifies a trio of letters
which I shall call the basic trio.
B19 The operator sets up his machine. To send a message he chooses a trio of letters
which I shall call the message setting. He turns the rotors until the basic trio is showing,
encodes the message setting twice, turns the rotors until the message setting is showing, and
encodes the message. The recipient turns his rotors until the basic trio is showing, decodes
the first six letters of the message (because Enigma encodings are pairings, encoding and
decoding on the Enigma are the same) giving him a trio of letters repeated, turns his rotors
until these letters are showing, and decodes the rest of the message. The ring setting and
message setting between them determine the position of the rotor. Conversely, if we can
discover the position of the rotor we can deduce its ring setting from the message setting
found as described in §A.
B20 To find which rotor is in first place in the machine on any one day we look for a pair
of messages in which the last two letters of the message setting are the same, for example
epz and kpz. k is six places after e in the alphabet, so the second message setting is either
6 places after the first in the sequence of encodings or 20 places before it, according to
when the first-place rotor makes the second rotor turn. If it turns between e and k, say at h,
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we have the sequence

kpz . . . zpz apz . . . epz fpz gpz hpz cqz jqz kqz . . .

and kpz comes before epz. If it turns before e or after k we have

. . . epz fpz gpz hpz ipk jpz kpz . . .

and kpz comes after epz. We write the second message under the first six places later, for
example

p x l o w n z a b u v l . . .
x a k u v h . . .

If kpz comes after epz, two letters in the same column will be encoded by the same
permutation, so if they are the same they will both represent the same letter in the original
message. It is a property of the German language that if we write one message under
another, about one time in 12, on average, two letters in the same column will be the same.
But if kpz comes before epz two letters in the same column will be encoded by different
permutations and will be the same only one time in 26 on average. With long enough
messages we can distinguish between the two, and we can confirm our result by writing the
second message 20 places ahead of the first. We can now tell whether or not the turn takes
place between e and k. If it doesn’t, and for one of the rotors it does, we can rule that rotor
out as first-place rotor. On any one day there will be several pairs of messages that we can
use and we can usually rule out two of the three rotors.
B21 Except for the days on which the intelligence service found the plugboard connec-
tions the cryptographers did not know the permutation S. But they did know that there were
only six wires for the plugboard, so that fourteen letters were left unchanged. We look at six
successive encodings found as described in part 1 on a day on which we have found which
rotor is in first place. We hope that the second rotor has not moved in the course of them. Let
the permutation produced by the second and third rotors be Q. We know the permutation N
produced by the first rotor in a certain position, but we do not know its position here. For
the first of the six successive encodings it will produce a permutation PxNP−x for some x.
For the second encoding it will produce the permutation Px+1NP−x−1 and so on. If the
encodings are A, B, C . . . F, then

A = SPxNP−xQPxN−1P−xS−1

If S left all letters unchanged we would have

Q = PxN−1P−xAPxNP−x

and similarly

Q = Px+1N−1P−x−1BPx+1NP−x−1

and four other equations involving C, D, E and F. We compute the right-hand sides
of each of these equations for each value of x from 0 to 25, and for one value of x all
six of them would be the same: they would all be Q. Because S does not leave all letters
unchanged this will not happen.
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B22 Let us see what does happen. Call the permutation produced by the first-place rotor
in the first of the six successive positions N1. Then A = SN1QN−1

1 S. (Remember that S−1

= S.) The first of our right-hand sides is N−1

1 AN1, i.e.

N−1

1 SN1QN−1

1 SN1

The cycles of N−1

1 SN1, like those of S, are six pairs and fourteen singletons. The cycles
of Q are thirteen pairs. Therefore at least one pair of Q must be made up of two of the
singletons of N−1

1 SN1, because the twelve letters in the six pairs of N−1

1 SN1 cannot occur
in more than twelve of the pairs of Q. At the other extreme, if these twelve letters between
them form six of the pairs of Q, there will be seven pairs of Q made up of singletons of
N−1

1 SN1. On average there will be three or four. Let αβ be such a pair. Then

αN−1

1 SN1QN−1

1 SN1 = αQN−1

1 SN1 because α is a singleton of N−1

1 SN1
= βN−1

1 SN1 because αβ is a pair of Q
= β because β is a singleton of N−1

1 SN1

B23 So the pair of Q is also a pair of our first right-hand side. The same applies to the
other five right-hand sides. So when we have found the right x a number of pairs of Q will
be repeated in the right-hand sides. Conversely, one of the twenty-six sextets of right-hand
sides will show repeated cycles, and this will be the one with the right value of x. This
value of x gives us N1, because N1 = PxNP−x. In an example that I made up for myself,
twenty-five sextets showed no particular pattern, but one showed five occurrences of one
pair, four of another, and three each of three others. (Three more pairs occurred twice, but
these could be coincidences, so I ignored them.) The five multiply-repeated pairs are five
of the pairs of Q.
B24 Three of the multiply-repeated pairs occurred in the first right-hand side, so each of
the six letters involved is a singleton in N−1

1 SN1. But if α is a singleton in N−1

1 SN1, then
αN−1

1 SN1 = α, so αN−1

1 S = αN−1

1 , and αN−1

1 is a singleton in S. This gave me six of the
singletons of S. Using the other five right-hand sides I found seven more of the singletons.
Having found some of the pairs of Q and most of the singletons of S, we look for a pair of
Q, call it αβ, for which αN−1 is a singleton in S. Because A = S−1N1QN−1

1 S; applying
N−1

1 S to the cycles of Q gives the cycles of A. N−1

1 S transforms α into αN−1

1 S, which is
αN−1

1 , because it is a singleton in S. We find the cycle of A that contains αN−1

1 ; this must
be the cycle that αβ transforms into. Let the other letter in this cycle be γ. Then βN−1S=γ,
so γ and βN−1 form a pair in S. In this way (using all the right-hand sides) we find some
of the pairs of S.
B25 If we have not found all the pairs of S we may have to use some ingenuity, varying
from case to case, to complete the solution. In my example, I found four pairs and thirteen
singletons of S, using between them all letters except e, f, h, i and k. Then S must transform
each of these five letters into one of the five. I also knew that ab is a pair of Q and aN−1

= e and bN−1 = f. Then N−1S transforms ab into eSfS. The only pair of A that is made
up of the five relevant letters is fh. So eSfS must be fh. We cannot have eS = f and fS = h,
because S = S−1, so we must have eS = h and fS = f. So f is the remaining singleton, and
eh is one of the two remaining pairs. The other pair can only be ik. In this way (or similar
ways) S is found.
B26 Just before the war the Germans changed the method of encoding the message
settings, introduced more rotors, and increased the number of plugboard connections.
The cryptographers had to find new methods. These methods were later used by British
cryptographers and are so well described by Gordon Welchman in The Hut Six Story that I
need not describe them here.
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C Italy and Japan

C1 The Enigma was not the only machine used for encoding by the axis powers. Another
was the Hagelin, used by the Italian navy. Like the Enigma, it was based on a commercial
machine. The Hagelin works by means of five wheels. Each time a letter is encoded, every
wheel makes a fraction of a revolution; one wheel makes a complete revolution every 13
moves, one every 11 moves, the others every 9, 8 and 7 moves. I don’t guarantee these
particular figures — I am working from a forty-year old memory — but the general idea
is that it will be a long time before the wheels repeat their alignment. If my figures are
correct, this happens only after 13 × 11 × 9 × 8 × 7 moves.
C2 The first wheel is fitted with 13 lugs, the second with 11, and so on. When the
machine is set up, each lug could be set to be either active or inactive. When an active lug
is in the operative position, the wheel pushes the letter being encoded a certain number of
places forward in the alphabet. The number for each wheel is determined when the machine
is set up. There is also a number, which we called the slide, which could be anywhere
from 0 to 25, and was always operative. For example, the numbers allotted to the wheels
might be 5, 9, 6, 7, 3 respectively and the slide might be 8. Suppose that when a letter was
encoded only the first and fourth wheels had active lugs in the operative position. Then the
letter would be pushed forward 5 + 7 + 8 places in the alphabet, so that a would encode into
the 21st letter, u. Then the wheels move and a different set of lugs are in operative position
for the next encoding.
C3 I don’t know how the initial break was made. When I started to work on this code
we had identified the machine, we knew that the set-up changed every month, and we
had decoded a good many messages. The Italian navy did something that any reasonably
competent cryptographer would regard as completely moronic: every message from the
admiralty to the submarine command started Da supermarina ad maricosom and every
message in the reverse direction started Da maricosom ad supermarina. (They used the
Latin ad instead of the Italian a for “to”. They also used et instead of e for “and”.)
C4 Each month we had to discover the positions of the lugs, the slide, and the allocation
of the numbers 3, 5, 6, 7, 9 to the wheels. (Again, I don’t guarantee these particular
numbers.) At midnight on the last day of each month two young but expert cryptographers
came on duty, and well before the end of their shift, at 8 a.m., they had always found the
new settings. They compared the standard addresses with the beginnings of intercepted
messages. If the first letter of an intercepted message is s, then the first letter of the message,
namely d, has been pushed forward 15 places. If the slide is 2 the wheels must have pushed
the letter forward 13 places, and this can be made up from separate pushes 3, 5, 6, 7, 9 in
only one way, namely 6 + 7. So whichever wheels had 6 and 7 allotted to them had active
lugs in the operative position, and the others had inactive lugs there.
C5 The stereotyped beginnings were twenty-four letters long. The wheel that rotated
once every 7 moves had the same lug in the operative position for the 1st, 8th, 15th and
22nd letters. If the pushes due to the wheels were respectively 13, 16, 6, 14, the possible
combinations would be

6 + 7
3 + 6 + 7 or 7 + 9

6
3 + 5 + 6 or 5 + 9

Then the push for the wheel cannot be 5, because that would mean that the lug is inactive in
the first three but active in the fourth. Nor can it be 7. So it must be 3 (inactive), 6 (active)
or 9 (inactive). Now we apply the same reasoning to the 2nd, 9th, 16th and 23rd letters, to
see if we can eliminate any of these three. And so on. If we eliminate them all, we have the
wrong slide, and start again with another. In practice, a wrong slide was eliminated quite
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quickly. In this way, we find the push allotted to this wheel and the positions of the active
lugs on it, and we find the slide. The rest is easy.
C6 Besides machine codes, manual codes were extensively used in the second world
war. In the course of history many ingenious codes have been devised, and the interested
reader can find them described in David Kahn’s The Codebreakers. But not only is ingenuity
no guarantee of security — the codebreaker may be more ingenious than the codemaker —
but the more ingenious a code is, the harder it is to use. For large-scale use a code has to be
straightforward enough for an ordinary signals clerk (who may be, especially in war-time,
someone who is not particularly intelligent or well-educated) to use with the least possible
risk of making a mistake. Mistakes in encoding are a godsend to the cryptographer. And
the code has to be such that a mistake in transmission, or a word unread because of static
or a weak signal, does not make the whole message unintelligible. As a result, by the time
I started code-breaking almost, if not quite, all large-scale manual codes were of one type:
the reciphered code-book.
C7 Early code-books were compiled by making a dictionary containing all the words
likely to be used and numbering them, say from 00000 to 99999 (leaving gaps if there
were fewer than 100,000 words). In order to deal with proper names and words that are
not included, the book would contain code-groups for letters and syllables that can be used
to spell them out. Messages sent in such a code are quite easy to decode, given enough
material. Things are more difficult with what we called a “hat book”. This is one in
which the words are numbered in random order, not alphabetical order, as though they were
thrown into a hat and withdrawn at random. Even this, surprisingly perhaps, is not secure.
So the code-groups are reciphered. The simplest method of reciphering is by non-carrying
addition. The encoder is provided with the code-book and with a key, consisting of groups
of five digits, compiled as randomly as possible. If a code-group is, say, 92482 and the
key-group is 79043 we add the digits of the key-group to the digits of the code-group
separately, ignoring any tens digits that occur:

key-group 79043
code-group 92482
encoded group 61425

(7 + 9 = [1]6, 9 + 2 = [1]1 etc.)

C8 To avoid confusion with ordinary addition, non-carrying addition is performed from
left to right. Eventually it was found better to subtract the code-group from the key-group;
this makes decoding the same as encoding. This type of code is called a subtractor.
C9 Early on the key might consist of perhaps 20 groups, which would be repeated
as often as required if a message were more than 20 groups long, but by the time I
started a typical key would have several hundred or even several thousand groups. Each
message would have to contain a group, which we called an indicator, telling the recipient
whereabouts on the key encoding started, The longer the key the more secure the code. The
extreme case is where it is possible to distribute so much key that no portion of it need be
used more than once. One way to ensure this is to print the key on a perforated note-pad
and instruct the operators to tear off each page once it has been used. We called this a pad
subtractor. It is guaranteed secure. It is practical only for very limited amounts of traffic.
We used it for messages containing information obtained by breaking enemy codes.
C10 Breaking subtractor codes depends on the fact that some words occur much more
frequently than others. For example, on page 20 of DIO 3, which I happen to have open,
there are about 350 words. One word (refraction) occurs 5 times, four words occur 3 times
each, and seven words occur twice each. This is a far cry from the number of repeats that
there would be if each of the several thousand words in one’s working vocabulary occurred
equally often. And military or naval prose is at least as stereotyped as astronomical prose.
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C11 So we look for repeats. If, in a fair amount of traffic, two groups repeat, the chance
that this has happened by accident is remote, there being one hundred thousand possible
groups. The chance that it is the same code-group recovered by the same key-group is
much higher. So we write one message under the other. We then look for other repeats and
eventually, with a reasonable amount of traffic, we will have several messages overlapping.
The number of messages that overlap is called the depth. We found that with a depth of
seven or more we could usually start key-breaking.
C12 The users of a code aimed to distribute so much key that the enemy cryptographers
wouldn’t find much depth. This is often difficult and sometimes impossible. We knew, for
instance, from the amount of traffic on our BAMS (British and allied merchant shipping)
code, used for sending messages to convoys, that the Germans must surely be reading much
of it most of the time.
C13 Suppose that six successive columns of four messages are as follows:

1 2 3 4 5 6
message A . . . 01384 92017 85318 79262 41047 33881 . . .
message B . . . 10789 92017 89064 30417 41047 19872 . . .
message C . . . 10789 13394 41037 30635 09910 30564 . . .
message D . . . 31480 10077 81032 12491 62324 07988 . . .

Messages A and B have been aligned by the repeats in columns 2 and 5. (The double repeat
makes it practically certain that these are no coincidence.) Message C has been aligned by
the repeat in column 1. Message D has been aligned by a repeat in some earlier or later
column.
C14 The three repeated groups might derive from three different high-frequency code-
groups. But two of them (or even all three) might derive from the same code-group. This
happens often enough to be worth trying. So let’s try it.
C15 Assume that the same code-group occurs in columns 2 and 5, messages A and B,
and assume, quite arbitrarily, that it is 00000. (If it is actually xyzuv then every code-group
and every key-group that we find will be xyzuv less than its actual value.) Then the key-
groups for columns 2 and 5 are 92017 and 41047, so the code-group enciphered at C2, for
instance is 89723:

key-group 92017
enciphered group 13394
code-group 89723

In fact, we have for the code-groups in the two columns

2 5
message A 00000 00000
message B 00000 00000
message C 89723 42137
message D 82040 89723

The code-group 89723 has repeated. This confirms our guess. So we test all pairs of repeats
in this way.
C16 The next step used the fact that the difference between the results of enciphering two
code-groups by the same key-group is the same as the difference between the code-groups
themselves. So we computed (using punched-card machinery) the differences between
every pair of groups in the same column. We looked for repeats. For example, in column
2 the difference between groups C and D is 03327. In column 6 the difference between
groups A and C is also 03327. So we see what happens if A6 = C2 = 89723 and C6 = D2
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= 82040. For this to happen the key-group for column 6 must be 12504, giving

key 12504
A 89723
B 03732
C 82040
D 15626

C17 If we started with a depth of 7 there are three more groups in this column and in
each of columns 2 and 5, which I have not displayed here. If any of these repeat we are
on the right track. If not, this might be a dead end. We try all the repeats in this way. As
I said, with a depth of 7 or more (and twenty or thirty columns) we could probably find
all the key-groups, ending up with the equivalent of an unreciphered code-book. For this
type of code the code-breakers were divided into two groups: the key-breakers — I was
one — who did what I have just been describing, and the book-builders, who identified
the code-groups once they had been stripped of their recipherment. The key-breakers were
mostly mathematicians or chess-players, the book-builders were mostly linguists. They
were not necessarily students of Italian, German and Japanese; the organizers took the
viewpoint that if you can learn one language you can learn another, and in fact quite a lot
of our book-builders were classicists.
C18 I don’t know all the details of how code-books were built up, but I do know that the
first code-group to be identified was usually the one for full-stop. It occurred frequently,
with consecutive occurrences never very close together and never very far apart. Groups
for “from” and “to” and addresses were also found fairly easily.
C19 When some code-groups had been identified we could use them to help in key-
breaking. For example, if we suspected in a partly-decoded message that a certain group
represented a number, we could try all the groups identified as numbers in that place,
working out the key-group in each case and seeing what it brought up in the rest of the
column.
C20 When the Italians became our co-belligerents, those of us who were working on
Italian codes switched to Japanese. The code that I worked on was the naval attaché
code. The code-book was ingenious. For each frequently-occurring word it had several
alternatives; I seem to remember that it had six groups for full-stop. It also had groups
which meant “message begins”. The encoder placed one of these at the start of the message,
divided the message in two, and sent the second part first. If the Italians had done this we
would have found their machine code much more difficult, if not impossible, to break.
C21 The code-book did not have separate groups for spelling proper names. Instead,
many groups had two meanings. For example, 41803 might normally mean “battleship”,
but after a group that meant “spelling starts” it might represent the syllable ENT. (The
Japanese used roman letters for spelling.) Each succeeding group would have its alternative
meaning until there came a group that meant “spelling ends”. There were also code-groups
that meant “next two groups are spellers” and “next three groups are spellers”. By contrast
with these clever devices the compiler of the code-book made a stupid mistake. He or she
needed only 50,000 groups and chose them, not at random, but by having one of the first
two digits of each code-group even and the other odd. This means that if we add the first
two digits of each enciphered code-group together, code-groups enciphered by the same
key-group are either all odd or all even. When two messages are arranged in depth they
show the same sequence of odds and evens. Conversely, if two messages show the same
sequences of twelve or more odds and evens, the chances are that they are using the same
stretch of key. This gave us a useful method of getting more depth. It also enabled us to
throw out some messages that we had set by repeats that were actually coincidences. Finally
we discovered the indicator system. The last group but one in a message gave a position in
the key (by page, row and column). The key-group there was added to the second group of
the message to give the position in the key where the encoding started.
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C22 The most interesting messages in this code were from the naval attaché in Madrid.
Nearly all of them came from a spy in Algeciras giving the number of warships in harbour
in Gibraltar. They presumably passed the information on to the Germans. (Just as our
submarine tracking room kept a tag on their submarines, so their intelligence presumably
kept a tag on our warships.) We could tell from these decodes how accurate their information
was and how well our deceptive measures were working.
C23 These messages were very stereotyped. They enabled us to achieve a real tour de
force: solving on a depth of 2. This is the minimum possible depth; a depth of 1 is both
practically and theoretically impossible, being equivalent to a pad subtractor. A typical
Madrid message might be:
message begins / Madrid naval attaché / from / X / to / Gibraltar harbour / in / battleship(s)
/ 1 / aircraft carrier(s) / 0 / cruisers / 2 / destroyers / 4 / submarines / 3 / small / ships / l0.
C24 In Japanese, words corresponding to prepositions like “from”, “to” and “in” come
after nouns; in fact, we called them postpositions. X is the addressee; I forget who it was.
Two Madrid messages overlapped. Running “message begins” groups through one of them
threw up “aircraft carrier” in the other. Trying “Madrid naval attaché” in the next column
of the first message gave a small whole number in the second. And so on. After a while we
were running types of warship through one message hoping to pick up numbers or types of
warship in the other, and we finished by decoding both messages.
C25 Although the Japanese have a perfectly good syllabary (called hiragana) in which
they can write their language, they prefer to use Chinese characters, reserving hiragana for
postpositions, verb-endings, and similar items. (If you have travelled in Japan you have
probably noticed that the names of railway stations and tram stops are written three times:
once in characters, once in hiragana, and once in roman letters.) This posed a problem for
us. The code-groups mostly represented Chinese characters, and it was essential to identify
the character, not just its translation. This is standard practice in cryptography. For example,
if the Germans were building up an English code-book and had identified the group for
“order” they could not replace it by a German translation, because it might mean Ordnung
(“in good order”), Befehl (“that’s an order!”), or Reihenfolge (“alphabetical order”), and
there are probably other meanings. We did not want to draw the Chinese characters. Most
of us probably couldn’t have made a decent job of it, and we would have had no practical
way of indexing them. Anyone who has used a Japanese (or Chinese) character dictionary
will know that it is slow and awkward.
C26 Every Chinese character used in Japanese (even those with only one meaning) has
at least two entirely different pronunciations: the Japanese word that it represents and the
Chinese word from which it is taken (or a rough approximation thereto). For example,
the Japanese for “three” is mitsu and the Chinese is san. So in Japanese the character for
“three” (three horizontal lines) is pronounced either san or mitsu. (This character can occur
in proper names (is the Irish surname Twomey a fair analogy?) and is the first character of
the name of the engineering firm Mitsubishi. It is also the first character of the name of the
electronics firm Sanyo.)
C27 Again, the Japanese for “mountain” is yama and the Chinese is shan. So the
character for mountain (a stylised diagram of three peaks) is pronounced yama or san in
Japanese. That is why the mountain usually called Fujiyama is sometimes called Fuji
san: it is just a different way of pronouncing the same character. Our solution was to
identify each character by using both pronunciations. Some characters have more than two
pronunciations; for them we chose two. So to us “three” was san, mitsu; “mountain” was
san, yama; “north” was hoku, kita, and so on. I am using here the more-or-less phonetic
(to an English speaker) spelling introduced by missionaries and used by Westerners. We
actually used the spelling used by the Japanese themselves: mitubisi instead of mitsubishi,
for example. Amusingly enough, when the Japanese introduced their system just before the
war, Jane’s Fighting Ships reported “the Japanese have renamed many of their warships”.
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C28 Even when we had pinned down a character our troubles were not over. Any one
character can have several meanings, often quite different. We used to joke that every
character had five meanings in Japanese: the one you want, the one you don’t want, a
religious one, an obscene one, and an obscure one. The dictionary that we used was made
in Japan and its English was not always perfect. In particular, it translated one Japanese
word as “a revolting lantern”.
C29 I am not going to take up the question of how valuable our code-breaking was. A
great deal has been written on this topic and opinions vary from rating it as a small but
useful contribution, to the assessment of a Polish writer who described the theorem that
the composite of two pairings has an even number of cycles of each length (which made
possible the initial break into Enigma) as “the theorem that won the war”.


