
Biographical Encyclopaedia of Astronomers, 2007 

Newton, Isaac  
 
Born Grantham, Lincolnshire, England, 25 December 1642 
Died London, England, 20 March 1727 
 
Newton was born as a fatherless child on Christmas Day. He was then given by his 
mother Hannah at 3 years to be reared by his grandmother. The young Isaac did not 
receive undue parental nurturing. There were stories of how his youthful inventions 
alarmed the inhabitants of Grantham village, such as a night-flying kite that carried a lit 
candle. The sundial he constructed as a youth is now owned by the Royal Society of 
London. 

After a grammar school education in Grantham, Newton entered Trinity College, 
Cambridge, in June 1661 and was chosen as a scholar in 1664. In 1669, the college 
elected him a fellow and the university, through the influence of Isaac Barrow, the 
incumbent, appointed him Lucasian Professor of Geometry. 

In December 1671 Newton presented a 2-in.-diameter reflecting telescope —the 
first ever constructed—to the Royal Society, which led to his election as a fellow. The 
telescope had a short lifetime because its mirror surface clouded over in a fortnight: It 
took over a century for nontarnishing reflectors to be made. This was swiftly followed by 
Newton’s 1672 “New theory of light and colour,” sometimes viewed as the first scientific 
paper. This had the effect of promoting his new reflecting telescope design by 
exaggerating the chromatic aberration from which refracting telescopes suffered. This 
exaggeration, which disturbed Robert Hooke and John Flamsteed, was reinforced in 
Newton’s Opticks of 1704, and effectively blocked achromatic lens development until 
1740. 

Using a prism and a chink of sunlight, Newton claimed to demonstrate that white 
light was composed of various colored rays that had merely been separated by the prism. 
Hooke disagreed, commenting that he could not see the necessity for such an inference. 
Th en, drawing from his alchemical studies, in a 1675 letter to the Royal Society , 
Newton formulated his immortal concept of the seven colors of the rainbow, inserting a 
seventh hue that no one could see. 

Newton was taught the new physics of René Descartes , and accepted the 
Cartesian vortex theory of planetary motions, adhering to it until the early 1680s, but he 
modified it with his own view of a downward-flowing gravity ether: This had a “sticky 
and unguent” nature as it pulled objects downward, as he explained in his 1675 letter. He 
was, at the time, immersed in the alchemical tradition, and this theory emerged from it. 
Modern Newtonian scholarship has shown that Newton’s early computations in the 
plague years concerning the conatus recedendi (or tendency of the huge ethers rotating 
round the Sun to recede) cannot be seen as an early perception of the inverse-square law 
of gravitational attraction, contrary to several centuries of interpretation.  

Around 1679/1680, in addition to his arduous alchemical labors on such matters 
as preparing the elixir and fixing antimony, Newton’s major interest lay in decoding the 
Apocalypse in order to analyze a presumed theological heresy of the fourth century 
concerning the Holy Trinity. The Platonist philosopher Henry More at Trinity 



recorded the enthusiasm with which Newton participated in discussion on such issues. 
We should therefore hesitate before accepting the received notion that Newton then 
linked Johannes Kepler ’s first two laws of planetary motion to dynamical principles, as 
he later claimed and as many books have repeated. But no documents of this character 
exist (as historian D. T. Whiteside demonstrated) dateable prior to the autumn of 1684, 
when, at Edmond Halley ’s bidding, he struggled with the great problem, and solved it. 

As a student, Newton had observed the comet of 1664 (C/1664 W1), but it was 
too distant for any orbital parameters to be inferred. The comets of C/1680 W1 and 
1p//1682 Q1 (Halley) were decisive for his thinking, with characteristics that seemed to 
be pointing to features of the to-be-born gravity theory. That of 1680 had its perihelion a 
mere fraction of the solar radius, yet was well outside the plane of the Solar System and 
so had little implication for the solar-vortex theory. Newton scrutinized it and received 
data from Flamsteed, after which he declined to believe what Flamsteed was telling him, 
that “ye two comets,” one of which faded away in the evening sky and the other of which 
reappeared in the morning sky a week later, were one and the same. Years later, the 
comet merited 17 pages of his Principia for its parabolic orbit—but, in 1680, discussing 
its motion in the context of his vortex theory with Flamsteed, he preferred Giovanni 
Cassini ’s view that it was in orbit round Sirius. Hooke’s seminal words to him, written 
on 6 January 1680, that throughout the Universe a force of gravity worked so that “the 
Attraction is always in a duplicate proportion to the distance from the Center Reciprocall 
…” had hitherto lain dormant in his mind. Then the only bright, periodic comet (later 
named after Halley) conveniently turned up in 1682, orbiting within the ecliptic plane but 
in the reverse direction to the planets, and this acted as a trigger. N 

Newton’s alchemical laboratory fire then went out for a couple of years. In the 
summer of 1684, following a visit of Halley, a more austere, left-brain process began as 
he apprehended that the “two comets” of 1680 were in fact one. In November of 1684 
Halley received a draft of De Motu , which employed the inverse-square law. Newton 
there demonstrated the link to Kepler’s first and second laws, using a cumbersome logic 
based upon relative volumes. Dealing with small changes in an elliptical orbit, it was a 
rudimentary integration procedure. The proof thus laboriously constructed required the 
rest of De Motu as its context, because it used the concepts there developed of force, 
impulse, and momentum conservation.  

In the spring of 1685, Newton accomplished his “moon-test” computation, justly 
his most famous. For his predecessors, the 27.3-day sidereal lunar orbit had carried an 
astral meaning, from the Moon’s passage against the starry constellations, but Newton 
ignored that and viewed it only as resulting from a central force. He became able in the 
1680s to compute acceleration by a centripetal force. “If stopped,” he explained, the 
Moon would fall a distance in 1 minute, equal to the distance an object on Earth would 
fall in 1 second; a 60-fold ratio was employed, related to the 60 Earth-radii lunar 
distance. There was no computation of acceleration, of “g,” despite the many textbooks 
that have averred this. Newton was now able to treat uniform circular motion as 
accelerated, toward its center. 

Then began the great synthesis of many physical ideas in the 2 ½ years during 
which Newton wrote his Principia , from the autumn of 1684 to March of 1687. Nicolaus 
Copernicus had made the Sun stationary, which Newton transformed into the immobility 
of the Solar System’s center of mass. Newton incorporated the work of Galileo Galilei , 



who had first discerned accelerated motion in free fall, where distance fallen in equal 
times goes as the sequence of odd numbers and is the same for all objects, replacing the 
old notion that heavy bodies fall faster. Descartes, and now Newton, affirmed that one 
physics should link the Earth and sky, demolishing the old duality between the 
“sublunary” world and the immutable heavens: Newton extended the work of Jean 
Buridan , who had developed the notion of impetus, whereby a body keeps moving, in 
place of Aristotle ’s notion that a body moves so long as it is pushed. Robert Boyle had 
described a vacuum at the top of a mercury column, which Newton now envisaged 
throughout the immensity of space; Newton derived Kepler’s three laws of planetary 
motion, which had ellipses replacing circular epicycles; Barrow, Newton’s mathematics 
teacher at Trinity, had taught a rudimentary calculus concerning “just nascent quantities,” 
which Newton employed to describe the motions of bodies; last but not least, from Hooke 
came Newton’s inverse-square law of gravitational attraction. A new universe gleamed, 
rational to the core. 

In dealing with the three-body problem, Newton’s calculations were given to five 
decimal places and eight figure accuracy, generating a huge error (200%) for lunar mass. 
He found the Earth–Moon mass ratio to be 22:1 rather than the currently accepted 81:1. 
Newton thus left to posterity an ultra-dense Moon. As a result, his first computation of 
the Earth–Moon barycenter in 1713 (for the Principia’s second edition) located it outside 
the Earth, from which derived the main error in his historic computation, linking the fall 
of an apple to the lunar orbit. 

Newton also explained why the Earth has two tides a day, a question that had so 
baffled Salviati and Sagredo in Galileo’s Dialogue , and indeed many previous natural 
philosophers. Newton formulated the inverse-cube law of tidal pull, whereby “the force 
of the moon to move the sea varies inversely as the cube of its distance from 
the earth.” This accounted for the Moon having a larger tidal pull than the Sun, although 
having only a tiny fraction of its gravity. Thereby he could explain why there are two 
high tides a day aligned with the Moon. Newton intuited this law with little by way of 
explanation, so his contemporaries such as Halley and David Gregory attempting to 
explain this tidal argument could do so only in a qualitative sense. 

The mighty synthesis thus accomplished had no practical use to astronomers. 
British ephemerides (for planetary and lunar positions) were not improved: Paris became 
the main center of their production over this period. After his 1693 nervous breakdown, 
Newton made one further scientific endeavor. He grappled with lunar theory in 
1694/1695, using Flamsteed’s new, high-precision data. This was the supreme scientific 
problem of the age, holding out the promise of finding longitude at sea. Could Newton 
explain the Moon’s erratic path using his gravity theory, since the rest of the Universe 
obeyed it? He could not (in Whiteside’s view). His hitherto respectful partnership with 
Flamsteed suffered from this, with a (successful) ploy of laying the blame for the 
failure upon the astronomer, as if he had demurred in sending the data. A fruit of this 
struggle appeared in 1702, with a lunar “theory” as was, paradoxically, not evidently 
based upon gravitational principles. This 1702 opus was the most frequently reprinted 
work of Newton’s in the first half of the 18th century: In seven steps of “equation” it 
obtained a final lunar longitude, accurate to several arc minutes. 

A modified version appeared in Book III of the Principia’s 2nd edition of 1713. 
Thus began the idea of ancillary equations, as a means of solving the three-body problem. 



Newton reintroduced epicycles into astronomy, a century aft er Kepler had banished 
them: His neo-Horroxian 1702 lunar theory was laden with four of them, and as such they 
reappeared in his Principia . French sources could never believe that this model with its 
wheels moving upon wheels had been deduced from gravity theory, while English 
histories soon managed to retell the story using the mid-18th-century theories of 
Leonhard Euler or Tobias Mayer as being “Newtonian.” 

In his Algebra of 1685, John Wallis commented upon a mathematical tract of the 
1660s by Newton, De Analysi, which Newton would not allow to be published; while 
admiring certain conventions and nomenclature, Wallis perceived in it no germ of a new 
fluxions theory, nor did anyone else in the 17th century, despite wide circulation of the 
manuscript. Only retrospectively, during the great fluxions battle with Gottfried Leibniz 
at the beginning of the 18th century, were such claims fi rst advanced. (The Principia 
contained integral but not differential calculus, the former having developed somewhat 
earlier than the latter.) Newton’s Arithmetica Universalis published in 1707 and taken 
from his mathematical lecture notes of the 1680s, compiled by William Whiston , 
enjoyed a much greater popularity in its time than either the Principia or Opticks, but it 
contained no trace of fluxions, Newton’s term for the differential calculus, and rather 
argued against the concept of introducing arithmetical terms into geometry. 

Albert Einstein  once declared that, “the solution of the differential law is one of 
Newton’s greatest achievements,” but the equations F = ma and F = mdv /dt were 
invented around 1750 by Euler in Berlin; no one in Newton’s lifetime had heard about 
them. The Berlin Academy of Sciences showed no inclination to view Euler’s great 
discoveries as having been anticipated. What the Principia stated was, merely, “change 
of motion is proportional to motive force impressed” with quantity of motion having been 
earlier defined as the product of mass and velocity. That was a statement about impulse 
as proportional to change in momentum and uses no rate-of-change concept. As I. 
Bernard Cohen has observed, Newton never wrote anything resembling F=kmv. The 
Principia with its geometrically structured proofs, achieved a depth of inscrutability 
unmatched by any other scientific text. Much of what is called “Newtonian” science is 
the reformulation of Newton’s work using Leibnizian calculus , a task accomplished 
largely on the Continent in the 18th century. 

The myths that surround the image of Newton tend to exaggerate the extent to 
which he used “fluxions,” but not always. for example it is often asserted that he 
developed the gravity-pull formula F = GMm/r2, a formula which was not, in fact, 
published in his lifetime. In “a famous but delusive phrase” (Rupert Hall), Newton 
averred in 1712 that his masterwork had first been composed in fluxional terms and then, 
later on, recast into a geometrical format. Generations of historians have reaffirmed that 
Newton had first composed his Principia in fluxional form and then recast it into its 
inscrutable geometric format, but not until 1975 did D.Whiteside disprove this notion and 
lay it to rest.  

“Newton’s method of approximation” was invented in 1845 by John Simpson, 
known today for his “Simpson’s method” for finding the approximate area under a curve. 
It is an iterative technique where the same equation is reused, and employs the Leibnizian 
calculus. Newton’s own method of approximation, described in his De Analysi and which 
he used to solve the “Kepler equation” for elliptical motion, was neither iterative nor 
fluxional. For each step of approximation it generated a new and different equation. 



Simpson was not eminent enough to hang onto the credit for his invention, which became 
attributed to Newton in the latter half of the 18th century. 

Few paid Newton more golden compliments that did Leibniz: “taking 
mathematics from the beginning of the world to the time of Sir Isaac, what he had done 
was much the better half,” he wrote to the Queen of Prussia in 1701. But after his 
mistreatment by the Royal Society in the fluxions dispute, he described Newton as “a 
mind neither fair nor honest.” Leibniz first published papers on the differential calculus in 
1684; these were seminal for the European development of the subject. Newton’s first 
work on the subject appeared in 1704, De Quadratura, which gave what we would call 
implicit functions. It did not describe time-dependent functions or how to find the 
gradient of a curve, and was primarily about methods of integration. 

Newton wrote over a million words on chemistry/alchemy, and believed that 
transmutation could possibly make or unmake gold, as expressed in his one published 
chemical/alchemical text, De Natura Acidorum (1710), which described that process. He 
read alchemical texts eagerly, but seems not to have written like an alchemist; he sought 
no path of redemption or perfection through such labors. Ultimately, his relation to the 
western alchemical tradition was that of terminator. Once his Opticks had affirmed the 
atomic view (“God in the Beginning form’d Matter in solid, massy, hard, impenetrable 
moveable Particles … even so very hard, as never to wear or break in pieces”), the 
colorful language of alchemy then had to transform into particulate affinity theory, during 
the 18th century. 

Hardly was the ink dry from his Principia in March 1687 when Newton was 
elected to represent Cambridge University in Parliament in an attempt to defy the king’s 
promotion of Roman Catholic professors. This morally courageous act put his career at 
risk and got him sternly rebuked from the feared Judge Jeffreys. Two years later the king 
had fled the country, Jeffreys was in the Tower, and Newton was in Parliament. When in 
1695 he became Warden of the Mint, the nation’s recoinage was successful, and the Bank 
of England first floated paper money, a difficult exercise in credibility. When Newton 
was elected President of the Royal Society in 1704, its membership and prestige climbed 
steadily. From being the most reclusive of scholars, where most of the tales about him 
concern his absent-mindedness, he became a man of public affairs: Member of 
Parliament, Justice of the Peace, Knight, President of the Royal Society, and Master of 
the Mint. In his religious views, Newton was probably a mortalist (disbelieving in human 
survival after death) and an anti-Trinitarian, either of which would have utterly debarred 
him from holding public office. 

In the last year of his life, in a Kensington garden far from the bustle and fumes of 
London, and while having tea with William Stukeley, Newton first told his story of the 
apple. Thus had the law of gravity dawned upon him. He located it in 1666, as London 
burnt and the plague raged. Earlier narrations, beginning in the 1690s, had involved his 
Mother’s garden at Grantham but lacked mention of this fruit. The neo-Biblical 
simplicity of this story proved irresistible, and it has flourished ever since. 

Nicholas Kollerstrom 
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